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We study complex processes whose evolution in time rests on the occurrence of a large and random number of events. The mean
time interval between two consecutive critical events is infinite, thereby violating the ergodic condition and activating at the same
time a stochastic central limit theorem that supports the hypothesis that theMittag-Leffler function is a universal property of nature.
The time evolution of these complex systems is properly generated by means of fractional differential equations, thus leading to the
interpretation of fractional trajectories as the average over many random trajectories each of which satisfies the stochastic central
limit theorem and the condition for the Mittag-Leffler universality.

1. Introduction

The fractional calculus has developed in a number of signif-
icant ways in the recent past. Sokolov et al. [1] maintain that
this calculus was restricted to the field of mathematics until
the last decade of the twentieth century, when it became very
popular among physicists as a powerful way to describe the
dynamics of a variety of complex physical phenomena. For
example, anomalous diffusion was described using fractional
diffusion equations [2, 3]; viscoelastic materials were mod-
eled using fractional Langevin equations [4]; and complex
dynamic systems could be governed using fractional control
[5]. In the last decade the concept of fractional dynamics
has gained further attention in the statistical and chemical
physics communities [6]. Fractional differential equations
have also been successfully applied to neural dynamics [7, 8]
and ecology [9] as well as to traditional fields of engineering
[10, 11] namely [12, 13].

Of particular interest to the authors is the growing liter-
ature on extending systems of nonlinear dynamic equations
having strange attractor solutions to fractional nonlinear
equations. Such extensions were typically made by replac-
ing integer-valued derivatives by fractional derivatives; for
example, in the Lorenz system [14–16], in the chaotic rigid

body motion of gyros [17], in Hopfield-type neural networks
[8], and in the immune model of HIV infection [18], to
name a few. These replacements were made in attempts to
incorporate dynamic mechanisms thought to be important
that could not be captured by the traditional models, for
example, complexity in the form ofmemory in time and non-
locality in space. The results of extending these nonlinear
models has been to apparently introduce dissipation into
the dynamics such that the solution on the strange attractor
collapses to that of a stable fixed point. The appearance
of a fixed point is interpreted to be a consequence of an
induced dissipation mimicking the complexity modeled by
the fractional derivatives.

Herein we provide an alternative interpretation of these
extensions that involves the notion of a fluctuating trajectory
and interpreting the fractional models as averages over an
ensemble of these trajectories on the strange attractor. This
view is consistent with one proposed as an extension of con-
servativeHamiltonian systems to fractional systems [19].This
generalization of classical mechanics is based on a random-
ization of chronological or clock time in the traditional phase
space using the notion of operational time and subordination.
Without going into the details of the extension of Hamilton’s
equations of motion to fractional form it suffices to note that
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fractional derivatives in chronological time are interpreted
as averages of a particle’s displacement and momentum over
the fluctuating operational time. Consequently, the dynamics
of a single fractional harmonic oscillator, for example, is
considered to be an average over an ensemble of harmonic
oscillators. Stanislavsky [19] emphasizes that each oscillator
differs slightly from every other oscillator in frequency
because of subordination.The phase space trajectories rather
than being level energy curves instead spiral into the origin
and the fractional oscillator “demonstrates a dissipative pro-
cess stochastic by nature.”

For the more general dynamical systems considered
herein there is no Hamiltonian with which to generate the
equations of motion. Recall that a strange attractor requires
the system to dissipate energy. Therefore the approach taken
here is stochastic rather than dynamic and requires the devel-
opment of a new form of the central limit theorem (CLT),
one that is compatible with the fractional calculus. Section 2
connects the familiar Mittag-Leffler function (MLF) solution
to a Caputo fractional differential equation [20] to what we
have named the stochastic central limit theorem (SCLT).

At the most elementary level the familiar relaxation rate
equation is replaced by its fractional form

𝑑
𝛼

Ψ (𝑡)

𝑑𝑡𝛼
= −𝜆
𝛼

Ψ (𝑡) (1)

and here we interpret the fractional derivative to be of the
Caputo form

𝑑
𝛼

Ψ (𝑡)

𝑑𝑡𝛼
≡

1

Γ (𝛼 − 𝑛)
∫

𝑡

0

𝑑𝑡


(𝑡 − 𝑡)
𝛼+1−𝑛

Ψ
(𝑛)

(𝑡


) , (2)

where the superscript is the derivative of integer order 𝑛 such
that 𝑛−1 < 𝛼 < 𝑛 and since 𝛼 < 1we have 𝑛 = 1.The solution
to (1) is the MLF [21, 22]

ΨML (𝑡) = 𝐸𝛼 (−(𝜆𝑡)
𝛼

) (3)

≡

∞

∑

𝑛=0

(−1)
𝑛

Γ (1 + 𝑛𝛼)
(𝜆𝑡)
𝑛𝛼 (4)

=

{{{

{{{

{

1 −
(𝜆𝑡)
𝛼

Γ (1 + 𝛼)
≈ exp [− (𝜆𝑡)

𝛼

Γ (1 + 𝛼)
], as 𝑡 → 0,

1

Γ (1 − 𝛼) (𝜆𝑡)
𝛼
, as 𝑡 → ∞.

(5)

Metzler and Klafter [23] exploited this connection between
the stretched exponential and inverse power-law (IPL) distri-
butions by interpreting the MLF as a survival probability and
thereby establishing a bridge between the advocates of these
two distinct forms of the survival probabilities as important
signs of complexity.

In the Materials and Methods section we show that
ΨML(𝑡) is universal, as had been advocated by Gorenflo and
Mainardi [24] and others [25] in the same sense as the
limit distributions in the CLTs of Laplace (CLT) and Lévy
(generalized CLT) but here the universality is shown to be

a consequence of the SCLT. In Section 2.1 the form of the
SCLT is set up and in Section 2.2 the theorem is proven
using a scaling argument. As a consequence of the SCLT we
show in Section 2.3 by introducing fluctuating trajectories,
interpreted as a proper representation of complex processes
with memory, that the MLF is universal. The universality
is a consequence of a subordination process. In the Results
and Discussion section the connection between the Caputo
fractional derivative and ΨML(𝑡) together with the fractional
trajectories of Section 2, through subordination result in the
fractional derivative being interpreted as an average over
infinitely many random trajectories. In Section 4 we draw
some conclusions.

2. Materials and Methods

In the late 1980s there was remarkable activity in the develop-
ment of the theory of random summations, namely, the case
where the number of summands is itself a random variable
[26]. We adopt the term stochastic limit theorem rather than
random summation to emphasize that we depart from the
exemplary Poisson condition of [26]. The MLF is generated
by a fluctuating number of events 𝑚 with fluctuations as
large as the mean value ⟨𝑚⟩. The main difference between
the traditional and the SCLT is that the former rests on the
sum of a fixed number𝑚 of fluctuations, and on the rescaling
procedure to use for 𝑚 → ∞. The SCLT is based on
keeping fixed the probability 𝑃

𝑆
of detecting an event, that

is, the probability that an event is visible in an experiment.
Each value of 𝑃

𝑆
generates a sequence of 𝑚 elementary

laminar regions but only one visible event at the end of
the last laminar region. The SCLT focuses on the interval
between two consecutive visible events and adopts a rescaling
procedure to compensate for the incomplete-measurement-
induced survival probability enhancement [27].We show that
all waiting-time 𝑝𝑑𝑓’s generating a non-integrable survival
probability as a consequence of the SCLT yield 𝜓ML(𝑡). This
proof leads us to conclude that ΨML(𝑡) is universal.

2.1. Stochastic Central LimitTheorem. Theconcept of survival
probability is connected to the stochastic perspective of a
complex system generating events in time. The time interval
between two consecutive events (laminar region) is assigned
the values ±1, according to a coin tossing prescription [28].
At time 𝑡 = 0 the system is prepared by selecting all the
realizationswith an event occurring at that time, with ensuing
positive laminar regions. As a consequence the probability
that no event occurs up to time 𝑡, denoted asΨ(𝑡), is properly
termed a survival probability, and the function

𝜓 (𝑡) ≡ −
𝑑Ψ (𝑡)

𝑑𝑡
(6)

is the waiting-time probability density function (𝑝𝑑𝑓). We
adopt the symbols ΨML(𝑡) and 𝜓ML(𝑡) to denote the MLF
survival probability and the correspondingwaiting-time𝑝𝑑𝑓,
respectively. Physical examples of 𝜓ML(𝑡) generated by the
cooperative interaction of many units can be found [27, 29],
with the important observation that the stretched exponential
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regime becomes more extended if the probability of gener-
ating a visible cooperative event decreases as discussed in
Section 2.2.

We assume that the time interval between two consecu-
tive critical events generated by the complex system under
study is given by the waiting-time 𝑝𝑑𝑓

𝜓 (𝜏) ∝
1

𝜏𝜇
, with 1 < 𝜇 < 2. (7)

The corresponding cumulative distributionΨ(𝜏) has the form

lim
𝜏→∞

Ψ (𝜏) ∝
1

𝜏𝛼
, with 𝛼 ≡ 𝜇 − 1 < 1. (8)

The origin of this condition, usually interpreted as a mani-
festation of complexity, can either be the anomalous nature
of the dynamics under investigation [30, 31] or the condition
of criticality [32]. In the former case the property described
by (7) can, for example, be the consequence of diffusing
molecules being trapped for long times in wells with a
random distribution of depths. In the latter and less well
known situation the emergence of temporal complexity is
due to the cooperative action of many interacting units. At
the onset of the cooperation-induced phase transition from
disorder to order, the mean field fluctuates and its non-
stationary waiting-time 𝑝𝑑𝑓 corresponds to an IPL 𝜓(𝑡) [33].

We adopt for the Laplace transform of the time function
𝑓(𝑡) the following notation:

𝑓 (𝑢) = £ {𝑓 (𝑡) ; 𝑢} = ∫
∞

0

𝑑𝑡 exp (−𝑢𝑡) 𝑓 (𝑡) . (9)

It is important to stress that to satisfy the long-time limit of
(7) the Laplace transform of 𝜓(𝜏) has the functional form

�̂� (𝑢) = 1 − (
𝑢

𝜆
0

)

𝛼

+ Ξ (𝑢) , (10)

with the condition on the subsidiary function Ξ(𝑢)

lim
𝑢→0

𝜆
𝛼

0

Ξ (𝑢)

𝑢𝛼
= 0. (11)

Therefore the subsidiary function must vanish more rapidly
than 𝑢𝛼 as 𝑢 → 0.

Note that the Laplace transform of the MLF survival
probability given by (3) is [20, 22]

Ψ̂ML (𝑢) =
𝑢
𝛼−1

𝑢𝛼 + 𝜆𝛼
0

(12)

and the relation to the Laplace transform of the waiting-time
𝑝𝑑𝑓 is

Ψ̂ML (𝑢) =
1 − �̂�ML (𝑢)

𝑢
(13)

so that with a little algebra we obtain

�̂�ML (𝑢) =
1

(𝑢/𝜆
0
)
𝛼

+ 1
, (14)

thereby yielding for the subsidiary function in (10)

Ξ (𝑢) = (
𝑢

𝜆
0

)

2𝛼

1

1 + (𝑢/𝜆
0
)
𝛼
, (15)

satisfying the condition of (11). In other words, the properties
of (10) and (11) are fulfilled by all the waiting-time 𝑝𝑑𝑓’s with
the scale-free condition of (7).We now show that thewaiting-
time 𝑝𝑑𝑓 corresponding to the sum of a large numbers of
times each of which is generated by the generic 𝑝𝑑𝑓𝜓(𝑡) of
(7), not necessarily of the MLF type, are MLF waiting-time
𝑝𝑑𝑓’s.

2.2. Imperfect Detection of Events. To make this demonstra-
tion as clear as possible and at the same time provide an
intuitive understanding of the SCLT, let us imagine that the
detector used to monitor the events produced by (7) is not
very accurate and that the probability of perceiving these
events is

𝑃
𝑆
< 1. (16)

As a consequence of this imperfection a time 𝑡 between two
consecutive visible events is the sum of 𝑚 elementary times
derived from the condition

𝑃 (𝑚) = 𝑃
𝑆
(1 − 𝑃

𝑆
)
𝑚

, (17)

which is the probability that the first𝑚 events after the initial
preparation event are not visible while the (𝑚 + 1)th event is
visible. For 𝑃

𝑆
→ 0,

𝑃 (𝑚) = 𝑃
𝑆
exp (−𝑚𝑃

𝑆
) , (18)

thereby implying that the standard deviation is on the same
order as the mean

(⟨𝑚
2

⟩ − ⟨𝑚⟩
2

)

⟨𝑚⟩
2

≈ 1. (19)

Thus, the condition

⟨𝑚⟩ =
1

𝑃
𝑆

→ ∞ (20)

of the SCLT is quite different from the condition𝑚 → ∞ of
the Gauss and Lévy CLTs, since𝑚 has very large fluctuations
around ⟨𝑚⟩ in the traditional argument. To better understand
the new theorem, we note that the probability of generating
at time 𝑡 an event that is the last of a sequence of 𝑚
events occurring at earlier times, 𝜓

𝑚
(𝑡), does not satisfy the

condition of generating a MLF stable form for 𝑚 → ∞.
However, the waiting-time 𝑝𝑑𝑓 of the time intervals between
visible events, does, for 𝑃

𝑆
→ 0. The 𝑝𝑑𝑓 of finding a visible

event a time interval 𝑡 after an earlier visible event is given by

𝜓
𝑉
(𝑡) =

∞

∑

𝑚=0

𝑃
𝑆
(1 − 𝑃

𝑆
)
𝑚

𝜓
𝑚+1

(𝑡) . (21)
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Implementing the well known property for renewal processes
[22, 28]

�̂�
𝑚
(𝑢) = [�̂� (𝑢)]

𝑚 (22)

we obtain from the Laplace transform of (21) after a little
algebra

�̂�
𝑉
(𝑢) =

�̂� (𝑢)

1 − ((1 − 𝑃
𝑆
) /𝑃
𝑆
) (�̂� (𝑢) − 1)

. (23)

Using the partitioning of (10) we rewrite (23) in the more
convenient form

�̂�
𝑉
(𝑢) =

1 − (𝑢/𝜆
0
)
𝛼

+ Ξ (𝑢)

1 + ((1 − 𝑃
𝑆
) /𝑃
𝑆
) (𝑢/𝜆

0
)
𝛼

− ((1 − 𝑃
𝑆
) /𝑃
𝑆
) Ξ (𝑢)

.

(24)

To fulfill the limiting condition of (11) the slowest contribu-
tion to Ξ(𝑢)must be

Ξslowest (𝑢) = 𝑘𝑢
𝛼+𝜖

, (25)

with 𝜖 > 0. Rescaling the Laplace variable𝑢with the detection
probability

𝑢 = 𝑢


𝑃
1/𝛼

𝑆
, (26)

transforms (24) into

�̂�
𝑉
(𝑢


) =
1 − 𝑃
𝑆
(𝑢


/𝜆
0
)
𝛼

+ Ξ (𝑢


𝑃
𝑆

1/𝛼

)

1 + (1 − 𝑃
𝑆
) (𝑢/𝜆

0
)
𝛼

− ((1 − 𝑃
𝑆
) /𝑃
𝑆
) Ξ (𝑢𝑃

𝑆

1/𝛼

)

(27)

that for 𝑃
𝑆
→ 0 reduces to

�̂�
𝑉
(𝑢


) =
1

1 + (𝑢/𝜆
0
)
𝛼
. (28)

In fact, the rescaled slowest contribution to Ξ(𝑢) is pro-
portional to 𝑃

1+𝜖/𝛼

𝑆
thereby making the contributions of

Ξ(𝑢) vanish for 𝑃
𝑆
→ 0 in both the numerator and the

denominator of (27).
We see that after rescaling �̂�

𝑉
(𝑢) coincides with (14) and

consequently its inverse Laplace transform is

𝜓
𝑉
(𝑡) = −

𝑑𝐸
𝛼
(−(𝜆
0
𝑡)
𝛼

)

𝑑𝑡
. (29)

Consequently, the survival probability of the visible events is
the MLF. This is the essence of the SCLT.

2.3. Fluctuating Trajectories. To use the SCLT to interpret
the fractional trajectories as averages over infinitely many
stochastic realizations, it is convenient to get ΨML(𝑡) from
the survival probability of the time interval between two
consecutive visible events. We note from (13) that

Ψ̂
𝑉
(𝑢) =

1 − �̂�
𝑉
(𝑢)

𝑢
. (30)

It is straightforward to show that inserting �̂�
𝑉
(𝑢) of (23) into

(30) yields a result equivalent to

Ψ
𝑉
(𝑡) =

∞

∑

𝑛=0

∫

𝑡

0

𝑑𝑡


𝜓
𝑛
(𝑡


)Ψ (𝑡 − 𝑡


) (1 − 𝑃
𝑆
)
𝑛

, (31)

which has the well known Montroll-Weiss continuous time
random walk (CTRW) structure [34]. The Laplace transform
of Ψ
𝑉
(𝑡) from (31) reads

Ψ̂
𝑉
(𝑢) =

1

𝑢 + Φ̂ (𝑢) 𝑃
𝑆

, (32)

where Φ̂(𝑢) is the Laplace transform of the Montroll-Weiss
memory kernel defined by

Φ̂ (𝑢) =
𝑢�̂� (𝑢)

1 − �̂� (𝑢)
. (33)

Note that by using inverse Laplace transforms it is straight-
forward to establish that (31) is equivalent to

𝑑

𝑑𝑡
Ψ
𝑉
(𝑡) = −𝑃

𝑆
∫

𝑡

0

𝑑𝑡


Φ(𝑡


)Ψ
𝑉
(𝑡 − 𝑡


) , (34)

whose time convolution structure justifies the adoption of the
termmemory kernel forΦ(𝑡).

Due to the equivalence between (21) and (31) we can use
the 𝑃
𝑆
scaling argument to immediately conclude that

lim
𝑃𝑆→0

Ψ̂
𝑉
(𝑢


) =
1

𝑢 + 𝑢1−𝛼𝜆𝛼
0

, (35)

thereby demonstratingwhy theMLF is ubiquitous in data sets
since it is the distribution of visible, that is,measurable events.

To shed further light into the SCLT, let us notice that the
condition 𝑃

𝑆
→ 0 has the effect of turning 𝑛 into a virtually

continuous time 𝜏, (1 − 𝑃
𝑆
)
𝑛 into exp(−𝑃

𝑆
𝜏) andΨ

𝑉
(𝑡) of (31)

into 𝐸
𝛼
(−𝑃
𝑆
(𝜆
0
𝑡)
𝛼

). Thus the MLF survival probability with
𝜆 = (𝑃

𝑆
)
1/𝛼

𝜆
0
is the counterpart in real time 𝑡 of the ordinary

exponential function exp(−𝑃
𝑆
𝜏),

𝐸
𝛼
(−𝑃
𝑆
(𝜆
0
𝑡)
𝛼

) = ∫

∞

0

𝑑𝜏𝑝
(𝑆)

(𝑡, 𝜏) exp (−𝑃
𝑆
𝜏) (36)

and 𝑝
(𝑆)

(𝑡, 𝜏) is the 𝑝𝑑𝑓 of times 𝑡 corresponding to the
continuous time 𝜏. A straightforward way of deriving (36)
from (31) rests on observing that the Laplace transform of
(31), namely, (32), can be interpreted as a double Laplace
transform 𝑝

(𝑆)

(𝑢, 𝑠) with 𝑠 = 𝑃
𝑆
. By inverse Laplace trans-

forming 𝑝(𝑆)(𝑢, 𝑠 = 𝑃
𝑆
) with respect to 𝑢 we obtain (36) in

accordance with [35–37]. The time 𝑡 can be interpreted as a
diffusing position of a random walker that keeps jumping in
the same direction. It is, in fact, an asymmetric Lévy process
[35–37]. We are therefore led to interpret the SCLT as a
consequence of the generalized CLT of Lévy. The condition
𝑛 → ∞ generates the Lévy stable 𝑝𝑑𝑓 and the sum over
infinitely many Lévy processes weighted by the exponential
function exp(−𝑃

𝑆
𝜏) generates the MLF survival probability,

in accordance with earlier results [38, 39].
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3. Results and Discussion

The SCLT is the first important result of this paper. The tra-
ditional CLT yields the Normal distribution as the limit 𝑝𝑑𝑓.
The generalized CLT developed by Lévy yields the 𝛼-stable
distribution as the limit 𝑝𝑑𝑓. Finally the SCLT presented
herein yields the MLF as the limit 𝑝𝑑𝑓. On the basis of the
SCLT we established a physical interpretation of fractional
trajectories that had not been previously considered in the
literature for non-conservative dynamic systems. The MLF
survival probability can be interpreted as the realization in
the continuous time 𝑡of the traditional exponential relaxation
process

𝑑Ψ (𝜏)

𝑑𝜏
= −𝑃
𝑆
Ψ (𝜏) (37)

in operational time. The probabilistic structure of (36) rep-
resents the sum over infinitely many such random relaxation
processes, which turns out to be equivalent to the MLF sur-
vival probability. In the same way a fractional trajectory, not
necessarily dissipative, was proven to be a sum over infinitely
many stochastic trajectories that for historical reasons we call
Montroll-Weiss trajectories.

3.1. Subordination and Fractional Dynamics. To relate the
physical interpretation established in the previous section to
the replacement fractional differential equations we intro-
duce the nomenclature of a fractional trajectory. Consider the
differential equation in operational time

𝑑

𝑑𝜏
V (𝜏) = −Γ̃V (𝜏) , (38)

where V is a generic multidimensional vector and Γ̃ is a
generic operator either linear or nonlinear acting on the
components of the vector V. With this concise notation
we may describe, for instance, the Lorenz system [14–16],
which is a remarkable application of the fractional calculus
to chaos, with V = {𝑋, 𝑌, 𝑍}. All the studies using the
fractional calculus can be represented by the notation of
(38). Consequently, in the nonlinear systemswhose dynamics
unfold on a strange attractor we follow the tradition and
replace the integer order derivative 𝑑/𝑑𝜏 with the Caputo
fractional derivative of index 𝛼, with 𝛼 < 1, to obtain

𝑑
𝛼

𝑑𝑡𝛼
V (𝑡) = −Γ̃V (𝑡) . (39)

We refer to the solution of (39) as a fractional trajectory, that
being the time trace of the solution in phase space for the
system. Here we anticipate the second result of this paper
that being the time evolution ofV(𝑡), the fractional trajectory,
is an average over infinitely many stochastic Montroll-Weiss
trajectories.

To properly define a Montroll-Weiss trajectory, let us go
back to (38) and adopt a numerical procedure to integrate it
over the operational time and obtain

V (𝜏 + Δ𝜏) = (1 − Δ𝜏Γ̃)V (𝜏) . (40)

The numerical procedure replaces the continuous one with
a discrete time as would be appropriate in a numerical
algorithm. Thus we can write for the 𝑛th iterate of this
equation, using the notation V(𝑛) ≡ V(𝑛Δ𝜏):

V (𝑛) = (1 − Δ𝜏Γ̃)
𝑛

V (0) . (41)

Note that the numerical solution of (38) realized by means
of the prescription (41) is an extension to a generic trajectory
of the exponential relaxation (1 − 𝑃

𝑆
)
𝑛. For this reason the

condition of perfect integration Δ𝜏 → 0 corresponds to
𝑃
𝑆
→ 0, thereby establishing a connection with the SCLT.
A stochastic Montroll-Weiss trajectory is obtained by

assuming the transition V(𝑛) → V(𝑛 + 1) is a crucial event
occurring at the time 𝑡(𝑛) = 𝜏

1
+ ⋅ ⋅ ⋅ 𝜏

𝑛
, where the 𝜏

𝑖
are

random times with the waiting-time 𝑝𝑑𝑓𝜓(𝜏) of (7), not
necessarily identical to 𝜓ML(𝜏). We assign to V(𝑡) the value
V(𝑛) with 𝑛 fulfilling the condition 𝑡(𝑛) ≤ 𝑡 < 𝑡(𝑛 + 1).

It is important to restate the difference between the Lévy
CLT and the SCLT. As shown in [30], the 𝑝𝑑𝑓𝑝(𝑆)(𝑡, 𝜏)
is an asymmetric Lévy process, which ought not to be
confused with the stable 𝜓ML(𝑡) generated by the procedure
of this paper. An average over infinitely manyMontroll-Weiss
trajectories yields

V (𝑡) =
∞

∑

𝑛=0

∫

𝑡

0

𝑑𝑡


𝜓
𝑛
(𝑡


)Ψ (𝑡 − 𝑡


) (1 − Δ𝜏Γ̃)
𝑛

V (0) . (42)

The left hand side of (42) is a Gibbs ensemble average over
infinitelymany fluctuating trajectories and should be denoted
by the symbol ⟨V(𝑡)⟩. However to stress its connection with
the fractional derivative formalism we continue to use the
symbol V(𝑡). The Laplace transform of V(𝑡) is

V̂ (𝑢) = 1

𝑢 + Φ̂ (𝑢) Δ𝜏Γ̃
V (0) . (43)

On the basis of the SCLT, we conclude that for Δ𝜏 → 0,
corresponding to 𝑃

𝑆
→ 0,

V̂ (𝑢) = 1

𝑢 + 𝑢1−𝛼𝜆𝛼
0
Δ𝜏Γ̃

V (0) . (44)

This allows us to replace the average given by (42) with its
fractional differential equivalent

𝑑
𝛼

𝑑𝑡𝛼
V (𝑡) = −Δ𝜏𝜆𝛼

0
Γ̃V (𝑡) . (45)

In fact, using the Caputo fractional derivatives we have

£{ 𝑑
𝛼

𝑑𝑡𝛼
V (𝑡) ; 𝑢} = 𝑢𝛼V̂ (𝑢) − 𝑢𝛼−1V (0) . (46)

Laplace transforming (45) with this rule has the effect of
yielding (44), thereby establishing that the fractional differen-
tial equation given by (39) is equivalent to themeanMontroll-
Weiss trajectory of (42), under the condition 𝜆

𝛼

0
Δ𝜏 = 1.

Note that Δ𝜏must be small enough as to ensure a convergent
solution to (38) with the possible effect of making 𝜆

0
so large
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as to virtually cancel the stretched exponential regime of the
MLF. With 𝜆𝛼

0
Δ𝜏 = 1 the effective rate 𝜆 is determined by

the eigenvalues of Γ̃, which determine the density of events,
thereby making the stretched exponential become ostensible
with very low event densities, in accordance again with the
property of incomplete measurement [27].

4. Conclusions

We have established the universality of the MLF survival
probability using a SCLT. The term stochastic in SCLT
emphasizes the fact that the large number of elementary
laminar timeswhose sumgenerates the time interval between
two consecutive visible events is a widely fluctuating number
with a fluctuation intensity as large as the mean number of
events involved in the process. The SCLT leads to a new
perspective of fractional trajectories, which yields a new
physical interpretation of their claimed stronger stability
on the part of those that have replaced the integer with
fractional derivatives. The dissipative nature of the fractional
trajectories has to be interpreted as a form of phase decor-
relation process rather than one with friction. The fractional
version of the popular Lotka-Volterra ecological dynamics,
for instance, generates a fractional trajectory that is the
sum over infinitely many Montroll-Weiss trajectories. Each
Montroll-Weiss trajectory is an ordinary Lotka-Volterra cycle
in the operational time 𝑛. Transitioning from the operational
time 𝑛 to the chronological time 𝑡 spreads these trajectories
over the entire Lotka-Volterra cycle thereby generating the
mistaken impression that the resulting average trajectory
reaches equilibrium through a dissipative process.
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